

A Study on Improving End-to-End Neural Coreference Resolution

Jia-Chen Gu, Zhen-Hua Ling, and Nitin Indurkhya National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China gujc@mail.ustc.edu.cn, {zhling, nitin}@ustc.edu.cn

Introduction

Coreference resolution

- **Definition**: the task of finding all expressions that refer to the same real-world entity in a text or dialogue
- Example: "I voted for Nader because he was most aligned with my values," she said.

Methods for coreference resolution

- Mention-pair classifiers (Bengtson et al., 2008)
- Entity-level models (Clark and Manning, 2016)
- Latent-tree models (Martschat and Strube, 2015)
- Mention-ranking models (Wiseman et al., 2015)
- Span-ranking models (Lee et al., 2017)
- Formulate the task as a set of antecedent assignments for each span

Experiments

Margin tuning on development dataset

- First end-to-end neural model for coreference resolution
- Not rely on syntactic parsers and many hand-engineered features
- Make independent decisions about whether two mentions are coreferential and then establish a coreference cluster through this kind of coreference relation

Methods

Model overview (Lee et al., 2017)

- > The only hyperparameter in our method is *margin* in the inequilties, which is used to measure the possibility of global inconsistance of coreference cluster.
- > The coreference clusters with less than 10 spans accounted for about 93% of all coreference clusters.

• Avg.F1 on test dataset with different maximum spans width

> 3934 mentions were not detected, in which 576 mentions had more than 10 words in a span that exceeded the maximum span width, taking a large part in the errors because of the limitation of the maximum span width.

Results on the test set on the English CoNLL-2012 shared task

s(the company

- > To alleviate the problem of **global inconsistence**, we propose a coreference cluster modification algorithm to confirm the coreference relation between intra-cluster spans which can help rule out the dissimilar span after we get a coreference cluster.
 - First step : check. Check whether there is the problem of global inconsistence of coreference cluster.
 - Second step : drop. If the problem of global inconsistence of coreference cluster truly happen, we need to consider which span to drop furthermore.

	MUC			B^3 CEAF _{$\phi 4$}						
	Prec.	Rec.	F1	Prec.	Rec.	F1	Prec.	Rec.	F1	Avg. F1
Martschat and Strube (2015) [16]	76.7	68.1	72.2	66.1	54.2	59.6	59.5	52.3	55.7	62.5
Clark and Manning (2015) [13]	76.1	69.4	72.6	65.6	56.0	60.4	59.4	53.0	56.0	63.0
Wiseman et al. (2015) [17]	76.2	69.3	72.6	66.2	55.8	60.5	59.4	54.9	57.1	63.4
Wiseman et al. (2016) [2]	77.5	69.8	73.4	66.8	57.0	61.5	62.1	53.9	57.7	64.2
Clark and Manning (2016b) [4]	79.9	69.3	74.2	71.0	56.5	63.0	63.8	54.3	58.7	65.3
Clark and Manning (2016a) [3]	79.2	70.4	74.6	69.9	58.0	63.4	63.5	55.5	59.2	65.7
Lee et al. (2017) [5]	78.4	73.4	75.8	68.6	61.8	65.0	62.7	59.0	60.8	67.2
Lee et al. (2018) [25]	81.4	79.5	80.4	72.2	69.5	70.8	68.2	67.1	67.6	73.0
Our proposed	78.3	73.8	76.0	68.3	62.4	65.2	62.8	59.7	61.2	67.5
Our proposed + paramter tuning	79.3	73.9	76.5	70.2	62.7	66.2	63.5	61.2	62.3	68.4

- > The baseline model of our methods was the span-ranking model from Lee et al. (2017) which achieved an F1 score of 67.2.
- > Our method achieved an F1 score of 67.5, improving the performance for coreference resolution. Furthermore, we can achieve a higher F1 score of 68.4 after parameter tuning.
- > Our method has the advantage of simplicity and it can be considered as a rule-based post-processing of the output given by the baseline model.

Conclusion

- > We proposed a cluster modification algorithm which can help modify coreference clusters to reduce errors caused by global inconsistence of coreference clusters.
- > Our experiments show that the model is susceptible to the maximum mention width which can help to increase the accuracy of coreference resolution. > We replace the scoring function with a feed-forward neural network which can help pick out the most important word.

```
else
      drop span j
    end if
  else
    drop none of these spans in a cluster
  end if
end for
```

> We tune the hyperparameters from two aspects

- Experiments show the model is susceptible to the maximum span width.
- Computing the weight of each word to form a weighted sum of word vectors in a span with a feed-forward neural network, which can help get more accurate attention weights to pick out the head word.

Dataset

CoNLL-2012 shared task

- English coreference resolution corpus
- Contains 2802 training documents, 343 development documents, and 348 test documents.

References

- Bengtson, Eric, and Dan Roth. "Understanding the Value of Features for Coreference Resolution." Urbana 51: 61801.
- Clark, Kevin, and Christopher D. Manning. "Improving Coreference Resolution by Learning Entity-Level Distributed Representations."
- Martschat, Sebastian, and Michael Strube. "Latent structures for coreference 3. resolution." Transactions of the Association of Computational Linguistics 3.1 (2015): 405-418.
- 4. Wiseman, Sam, et al. "Learning Anaphoricity and Antecedent Ranking Features for Coreference Resolution."
- 5. Lee, Kenton, et al. "End-to-end Neural Coreference Resolution." Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.