Building Sequential Inference Models for End-to-End Response Selection

Jia-Chen Gu¹, Zhen-Hua Ling¹, Yu-Ping Ruan¹ and Quan Liu^{1,2} ¹National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China ²iFLYTEK Research

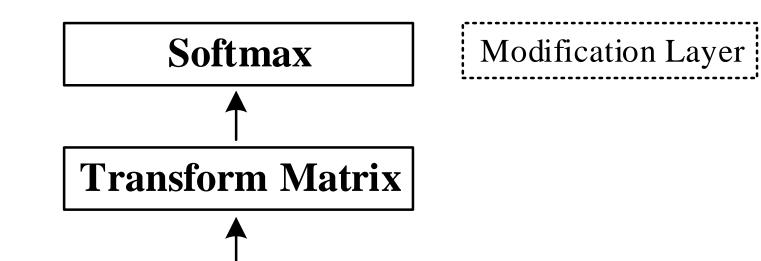
Introduction

Track 1 of the 7th Dialogue System Technology Challenges (DSTC7) is a kind of **retrieval-based** task which selects the correct response for the current conversation from a set of candidates with response selection algorithms. Two kinds of datasets are provided.

• One is the Advising dataset which is focused and small.

• The other one is the Ubuntu dataset which is more diverse and large. The task is divided into 5 subtasks. A participant may participate in one, several, or all the subtasks to meet different goals for different subtasks. We only participate in the subtask 1 of this track, which aims to select the next utterance from **a candidate set of 100 utterances**.

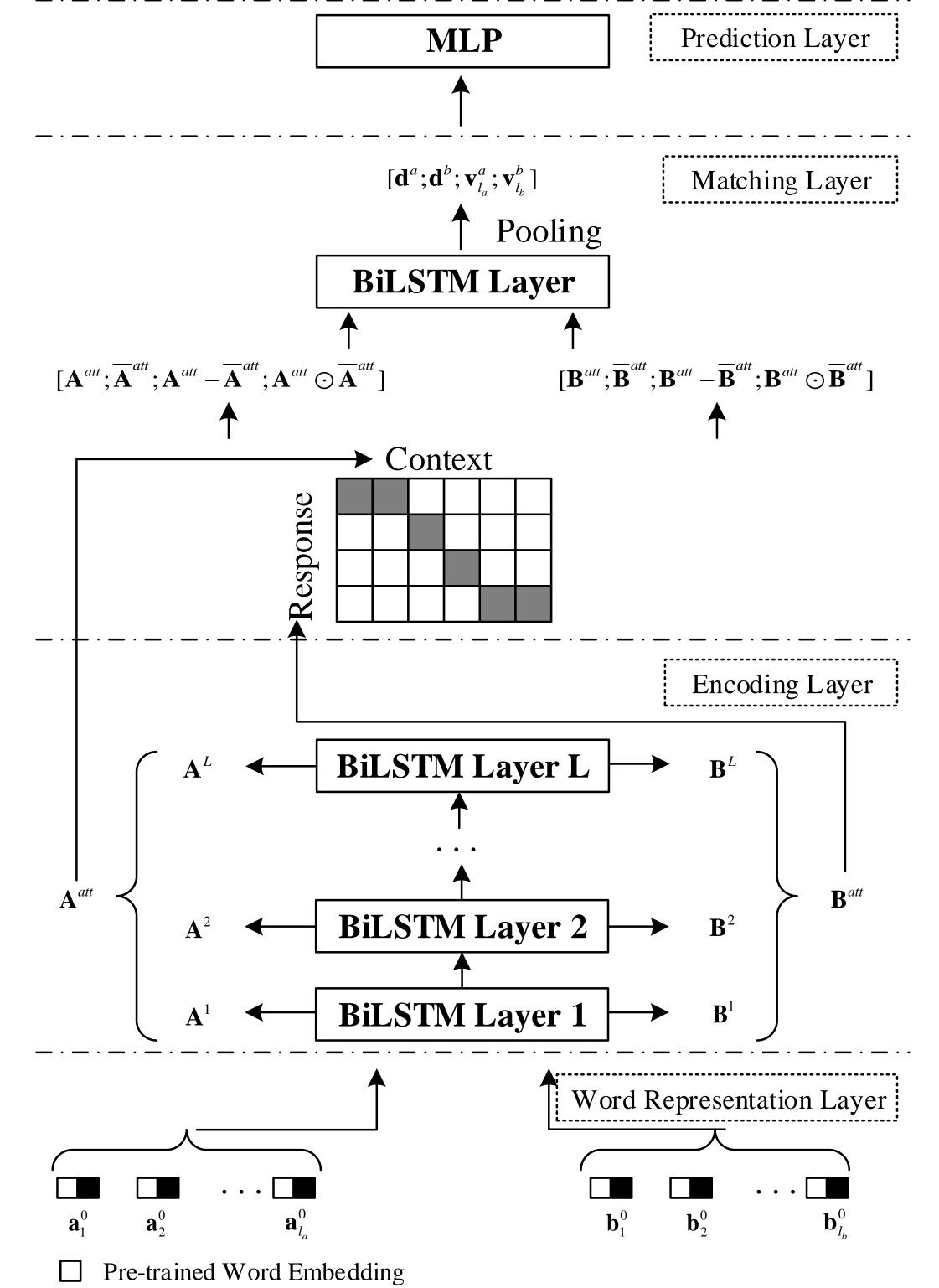
Results


The results of our model on Ubuntu dataset and Advising dataset are summarized as follows. In the released evaluation results of DSTC7, our proposed method **ranked second on the Ubuntu dataset and third on the Advising dataset in subtask 1 of Track 1.**

Dev/Test	Dataset	R ₁₀₀ @1	$R_{100}@10$	R ₁₀₀ @50	MRR
Dev	Ubuntu(single)	0.521	0.817	0.982	0.616
	Ubuntu(ensemble)	0.534	0.825	0.982	0.631
	Advising(single)	0.206	0.556	0.906	0.323
	Advising(ensemble)	0.260	0.626	0.930	0.377
Test	Ubuntu(ensemble)	0.608	0.853	0.984	0.691
	Advising-1(ensemble)	0.420	0.766	0.972	0.538
	Advising-2(ensemble)	0.194	0.582	0.908	0.320

Methodology

We propose a sequential model for end-to-end response selection by improving the original ESIM model from the following four aspects.


- A new word representation method which combines the general pretrained word embeddings with those estimated on the task-specific training set to address the challenge of OOV words.
- An attentive hierarchical recurrent encoder (AHRE) is designed which encodes sentences hierarchically and generates sentence representations by aggregating with attention.
- A new pooling method which combines multidimensional pooling and last-state pooling.
- A modification layer is added before the softmax layer to **emphasize the importance of the last utterance in the context** for response selection.

Analysis

We further investigated the effects of different parts in our proposed model by removing them one by one built on the Ubuntu development dataset.

\mathbf{R}_{100} @1	R_{100} (20) 10	R ₁₀₀ @50	MRR
0.521	0.817	0.982	0.616
0.514	0.804	0.981	0.611
0.506	0.799	0.977	0.602
0.500	0.791	0.974	0.598
	0.521 0.514 0.506	0.521 0.817 0.514 0.804 0.506 0.799	0.5210.8170.9820.5140.8040.9810.5060.7990.977

Conclusion

In this paper, we have introduced our end-to-end model proposed for the response selection task in DSTC7. This model improves the original ESIM model from several aspects:

- Enhanced word representations
- AHRE for sentence encoding
- Multi-dimentional and last-state pooling for context-response matching
- Score calculation with emphasis on the last utterance in the context.
 Our proposed method ranked second on the Ubuntu dataset and third on the Advising dataset in subtask 1 of Track 1. Our future work includes to design a more domain-general framework that can alleviate domaindependency of models.

Reference

Chen Q, Zhu X, Ling Z H, et al. Enhanced LSTM for Natural Language Inference, ACL' 17

Dong J, Huang J. Enhance word representation for out-of-vocabulary on

Training Set Word Embedding

Ubuntu dialogue corpus, arXiv' 18 Shen T, Zhou T, Long G, et al. Disan: Directional self-attention network for rnn/cnn-free language understanding, AAAI' 18

Contact

Email: gujc@mail.ustc.edu.cn Github: https://github.com/JasonForJoy/DSTC7-ResponseSelection