

Dually Interactive Matching Network for Personalized

Response Selection in Retrieval-Based Chatbots

Jia-Chen Gu¹, Zhen-Hua Ling¹, Xiaodan Zhu² and Quan Liu^{1,3}

¹National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China ²ECE, Oueen's University, ³State Key Laboratory of Cognitive Intelligence, iFLYTEK Research

Introduction

Personalized response selection is a task to select a correct response from a list of candidates considering:

- (1) the context of the conversation
- S1: Hello, how are you doing tonight?
- S2: I am well an loving this interaction.
- S1: I just got back from the club.
- S2: This is my favorite season of a year.

(2) the persona of the speaker

...

S1: I like to dance at the club. I like taking and posting selkies.

S2: I love to meet new people. Autumn is my favorite season.

<u>Problem 1</u>: The context is treated at coarsegrained context-level while each utterance may play different roles.

Method: Compute similarities between each context utterance and each profile at finegrained utterance-level.

<u>Problem 2</u>: The interactions between the persona and each response candidate are ignored.

<u>Method</u>: Add interactions between the persona and each response.

IMN-Based Persona Fusion

The representation vectors of context, context utterances and persona profiles are denoted as **c** , $\{\mathbf{u}_m\}_{m=1}^{n_c}$ and $\{\mathbf{p}_n\}_{n=1}^{n_p}$ respectively. **Context-level persona fusion**:

$$\mathbf{c}^+ = \mathbf{c} + \sum \mathbf{Softmax}(\mathbf{c} \cdot \mathbf{p}_n)\mathbf{p}_n$$

$$\mathbf{u}_m^+ = \mathbf{u}_m + \sum_n \operatorname{Softmax}(\mathbf{u}_m \cdot \mathbf{p}_n)\mathbf{p}_n$$

$$\mathbf{c}^+ = \operatorname{Aggregation}(\{\mathbf{u}_m^+\}_{m=1}^{n_c})$$

To add another interactive matching between the persona and each response, we formulate the task as a dual matching problem.

(1) Word Representation Layer: general, task-specific and character embeddings.

- (2) Sentence Encoding Layer: a single-layer BiLSTM to encode each utterance, response and each profile separately.
- (3) Matching Layer: a cross-attention module to derive the matching information by the interactive matching between the context and response, and that between the persona and response.

(4) Aggregation Layer: to convert matching matrices into the final matching vector.(5) Prediction Layer: a MLP classifier to return a score denoting the matching degree.

Experiments

	Self Persona				Their Persona			
	Original		Revised		Original		Revised	
	hits@1	MRR	hits@1	MRR	hits@1	MRR	hits@1	MRR
IR baseline	41.0 (+19.6)	-	20.7 (-0.7)	-	18.1 (-3.3)	-	18.1 (-3.3)	-
Starspace	48.1 (+16.3)	-	32.2 (+0.4)	-	24.5 (-7.3)	-	26.1 (-5.7)	-
Profile	47.3 (+15.5)	-	35.4 (+3.6)	-	28.3 (-3.5)	-	29.4 (-2.4)	-
KV Profile	51.1 (+16.2)	-	35.1 (+0.2)	-	29.1 (-5.8)	-	28.9 (-6.0)	-
FT-PC	-	-	60.7 (-)	-	-	-	-	-
IMN _{ctx}	64.3 (+0.5)	76.2 (+0.4)	63.8 (+0.0)	75.8 (+0.0)	63.7 (-0.1)	75.8 (+0.0)	63.5 (-0.3)	75.7 (-0.1
IMN _{utr}	66.7 (+2.9)	78.1 (+2.3)	64.0 (+0.2)	76.0 (+0.2)	63.9 (+0.1)	75.9 (+0.1)	63.7 (-0.1)	75.7 (-0.1
DIM	78.8 (+15.0)	86.7 (+10.9)	70.7 (+6.9)	81.2 (+5.4)	64.0 (+0.2)	76.1 (+0.3)	63.9 (+0.1)	76.0 (+0.2

Dataset: PERSONA-CHAT

Baseline $\mathsf{IMN}_{\mathsf{ctx}}\!:\!\mathsf{IMN}\text{-}\mathsf{based}$ persona fusion at the context-level

Baseline IMN_{utr}: IMN-based persona fusion at the utterance-level

Numbers in parentheses indicate gains or losses after adding the persona conditions. DIM outperformed its baseline IMN_{ctx} by a margin of **14.5%** and previous models by margins larger than **27.7%** in terms of hits@1 conditioned on original self personas.

Analysis hits@1 | MRR

	mus@1	
DIM	78.8	86.7
- persona	63.8	75.8
- context	48.8	60.9

(1) **Ablation tests** of removing either personaresponse matching or context-response matching in DIM show both contribute.

Test Train	Original	Revised
Original	78.8	66.3
Revised	77.6	70.7

(2) **Transfer tests** were conducted by training and evaluating using mismatched types of personas.

Conclusion

In this paper, we formulate the task of personalized response selection as a dual matching problem. A new model named Dually Interactive Matching Network (DIM) is proposed, which achieves a new state-of-the-art performance on PERSONA-CHAT set.

Reference

Zhang S, Dinan E, Urbanek J, Szlam A, Kiela D, and Weston J. Personalizing dialogue agents: I have a dog, do you have pets too? ACL' 18 Gu J, Ling Z and Liu Q. Interactive matching network for multi-turn response selection in retrieval-based chatbots. CIKM' 19

Contact

Email: gujc@mail.ustc.edu.cn Github: github.com/JasonForJoy/DIN Homepage: home.ustc.edu.cn/~gujc/

