

Speaker-Aware BERT for Multi-Turn Response Selection in Retrieval-Based Chatbots

Jia-Chen Gu¹, Tianda Li², Quan Liu^{1,3}, Zhen-Hua Ling¹, Zhiming Su³, Si Wei³, Xiaodan Zhu²

¹National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China

²ECE & Ingenuity Labs, Queen's University

³State Key Laboratory of Cognitive Intelligence, iFLYTEK Research

- Introduction
- Speaker-Aware BERT
- Experiments
- Conclusion

Introduction

• Multi-Turn Response Selection

The task is to select the best-matched response from a set of candidates given the context of a conversation.

	Context					
Utterance 1	Human: How are you doing?					
Utterance 2	ChatBot: I am going to hold a drum class in Shanghai. Anyone wants to join?					
Utterance 3	Human: Interesting! Do you have coaches who can help me practice drum?					
Utterance 4	ChatBot: Of course.					
Utterance 5	Human: Can I have a free first lesson?					
	Response Candidates					
Response 1	Sure. Have you ever played drum before?	(Correct)				
Response 2	What lessons do you want?	(Wrong)				

- Introduction
- Speaker-Aware BERT
- Experiments
- Conclusion

Three issues in present pre-trained language models (PLMs) for dialogue:

- Unable to model the speaker change in turn as a conversation progresses.
- Unable to process disentangled conversations with multiple speakers.
- Lack specific in-domain knowledge.

Two strategies to model the speaker change information:

- Add the speaker embeddings to the token representation.
- Add the special segmentation tokens between the context utterances.

A heuristic speaker-aware strategy to disentangle the dialogue:

- Define spoken-from speaker who is uttering an utterance
- Define spoken-to speaker who is receiving an utterance
- Select the utterances which have the same spoken-from or spoken-to speaker as the spoken-from speaker of the response
- The selected utterances are assigned with the spoken-from or spoken-to speaker embeddings respectively.

Domain adaptation to incorporate in-domain knowledge into PLMs:

- Employ the training set of each dataset for domain adaptation without additional external knowledge.
- Continue post-training with: (1) a next sentence prediction (NSP) loss, and (2) a masked language model (MLM) loss.

- Introduction
- Speaker-Aware BERT
- Experiments
- Conclusion

• Datasets

Datasets		Train	Valid	Test
Libuatu \/1	pairs	1M	0.5M	0.5M
	positive : negative	1:1	1:9	1:9
	pairs	1M	195k	189k
Obuntu VZ	positive : negative	1:1	1:9	1:9
. .	pairs	1M	50k	10k
Douban	positive : negative	1:1	1:1	1:9
E commorco	pairs	1M	10k	10k
E-commerce	positive : negative	1:1	1:1	1:9
DSTC8	pairs	11M	1M	1M
	positive : negative	1:99	1:99	1: 99

• Overall Performance

	Ubuntu Corpus V1			Ubuntu Corpus V2				
	$R_2@1$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	$R_2@1$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$
TF-IDF (Lowe et al., 2015; Lowe et al., 2017)	0.659	0.410	0.545	0.708	0.749	0.488	0.587	0.763
RNN (Lowe et al., 2015; Lowe et al., 2017)	0.768	0.403	0.547	0.819	0.777	0.379	0.561	0.836
LSTM (Lowe et al., 2015; Lowe et al., 2017)	0.878	0.604	0.745	0.926	0.869	0.552	0.721	0.924
DL2R (Yan et al., 2016)	0.899	0.626	0.783	0.944	-	-	-	-
Match-LSTM (Wang and Jiang, 2016b)	0.904	0.653	0.799	0.944	-	-	-	-
MV-LSTM (Wan et al., 2016)	0.906	0.653	0.804	0.946	-	-	-	-
Multi-View (Zhou et al., 2016)	0.908	0.662	0.801	0.951	-	-	-	-
RNN-CNN (Baudis and Sedivý, 2016)	-	-	-	-	0.911	0.672	0.809	0.956
CompAgg (Wang and Jiang, 2016a)	0.884	0.631	0.753	0.927	0.895	0.641	0.776	0.937
BiMPM (Wang et al., 2017)	0.897	0.665	0.786	0.938	0.877	0.611	0.747	0.921
HRDE-LTC (Yoon et al., 2018)	0.916	0.684	0.822	0.960	0.915	0.652	0.815	0.966
SMN (Wu et al., 2017)	0.926	0.726	0.847	0.961	-	-	-	-
DUA (Zhang et al., 2018b)	-	0.752	0.868	0.962	-	-	-	-
DAM (Zhou et al., 2018b)	0.938	0.767	0.874	0.969	-	-	-	-
MRFN (Tao et al., 2019a)	0.945	0.786	0.886	0.976	-	-	-	-
IMN (Gu et al., 2019)	0.946	0.794	0.889	0.974	0.945	0.771	0.886	0.979
IOI (Tao et al., 2019b)	0.947	0.796	0.894	0.974	-	-	-	-
MSN (Yuan et al., 2019)	-	0.800	0.899	0.978	-	-	-	-
BERT	0.950	0.808	0.897	0.975	0.950	0.781	0.890	0.980
SA-BERT	0.965	0.855	0.928	0.983	0.963	0.830	0.919	0.985

SA-BERT achieves new state-of-the-art performances on five public datasets.

• Overall Performance

	Douban Conversation Corpus					E-commerce Corpus			
	MAP	MRR	P @1	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$
TF-IDF (Lowe et al., 2015)	0.331	0.359	0.180	0.096	0.172	0.405	0.159	0.256	0.477
RNN (Lowe et al., 2015)	0.390	0.422	0.208	0.118	0.223	0.589	0.325	0.463	0.775
LSTM (Lowe et al., 2015)	0.485	0.527	0.320	0.187	0.343	0.720	0.365	0.536	0.828
Multi-View (Zhou et al., 2016)	0.505	0.543	0.342	0.202	0.350	0.729	0.421	0.601	0.861
DL2R (Yan et al., 2016)	0.488	0.527	0.330	0.193	0.342	0.705	0.399	0.571	0.842
MV-LSTM (Wan et al., 2016)	0.498	0.538	0.348	0.202	0.351	0.710	0.412	0.591	0.857
Match-LSTM (Wang and Jiang, 2016b)	0.500	0.537	0.345	0.202	0.348	0.720	0.410	0.590	0.858
SMN (Wu et al., 2017)	0.529	0.569	0.397	0.233	0.396	0.724	0.453	0.654	0.886
DUA (Zhang et al., 2018b)	0.551	0.599	0.421	0.243	0.421	0.780	0.501	0.700	0.921
DAM (Zhou et al., 2018b)	0.550	0.601	0.427	0.254	0.410	0.757	-	-	-
MRFN (Tao et al., 2019a)	0.571	0.617	0.448	0.276	0.435	0.783	-	-	-
IMN (Gu et al., 2019)	0.570	0.615	0.433	0.262	0.452	0.789	0.621	0.797	0.964
IOI (Tao et al., 2019b)	0.573	0.621	0.444	0.269	0.451	0.786	0.563	0.768	0.950
MSN (Yuan et al., 2019)	0.587	0.632	0.470	0.295	0.452	0.788	0.606	0.770	0.937
BERT	0.591	0.633	0.454	0.280	0.470	0.828	0.610	0.814	0.973
SA-BERT	0.619	0.659	0.496	0.313	0.481	0.847	0.704	0.879	0.985

SA-BERT achieves new state-of-the-art performances on five public datasets. ¹²

• Overall Performance

DSTC 8-Track 2-Subtask 2								
Set	Model	MRR	$R_{100}@1$					
Valid	IMN (Gu et al., 2019)	0.443	0.322					
	IMN (Gu et al., 2019) + SDS	0.504	0.375					
	BERT	0.335	0.258					
	BERT + SDS	0.560	0.440					
	SA-BERT - SDS	0.344	0.265					
	SA-BERT	0.594	0.477					
	SA-BERT (Ensemble)	0.611	0.496					
Test	SA-BERT (Ensemble)	0.621	0.506					

SA-BERT achieves new state-of-the-art performances on five public datasets. Ablation tests by ablating the speaker-aware disentanglement strategy (SDS).

• Analysis

Pre-train	Speaker embeddings	$R_2@1$	$\mathbf{R}_{10}@1$	$R_{10}@2$	$R_{10}@5$
No	No	0.950	0.781	0.890	0.980
No	Yes	0.950	0.786	0.890	0.981
Yes	No	0.961	0.825	0.915	0.984
Yes	Yes	0.963	0.830	0.919	0.985

Ablation tests on the Ubuntu V2 dataset by ablating the speaker embeddings.

• Analysis

Adaptation corpus	$R_2@1$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$
None	0.950	0.786	0.890	0.981
DSTC8	0.954	0.803	0.902	0.981
Ubuntu V1	0.961	0.824	0.914	0.985
Ubuntu V2	0.963	0.830	0.919	0.985

Results on the test set of Ubuntu V2 dataset, by domain adaptation with different corpora and fine-tuning all on the training set of Ubuntu V2 dataset.

The more similar to the task this adaptation corpus is, the more improvement it can help to achieve.

- Introduction
- Speaker-Aware BERT
- Experiments
- Conclusion

Conclusion

- Speaker change is an important and intrinsic property of multi-turn dialogues, which should be modeled in PLMs.
- In addition to general knowledge, specific in-domain knowledge is also important for response selection in retrieval-based chatbots.

Jia-Chen Gu

Tianda Li

Quan Liu

Zhen-Hua Ling

Zhiming Su

Si Wei

Xiaodan Zhu

Code and Model: <u>https://github.com/JasonForJoy/SA-BERT</u>