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Introduction

• Two-Party Conversation: Utterances are posted one by one between 
two interlocutors sequentially.

• Multi-Party Conversation: Each utterance can be spoken by anyone 
and address anyone else in this conversation.
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Related Work

• The representation learning of interlocutors and utterances in MPC 
are either separate or interactive from two representation spaces.

• Pre-trained language models still overlook the inherent relationships 
between utterances and interlocutors, such as “address-to”.

• Existing studies design models for each individual task in MPC 
separately, while neglect the complementary information among 
these tasks.
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MPC-BERT

Our goal is to build a pre-trained language model for universal MPC 
understanding. MPC-BERT jointly learns who says what to whom in 
MPC by designing self-supervised tasks, so that it can produce better 
interlocutor and utterance representations which can be effectively 
generalized to multiple downstream tasks of MPC.

• Interlocutor Structure Modeling.

• Utterance Semantics Modeling.
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Model overview of MPC-BERT

• A [CLS] token is inserted at the start of each utterance.

• Position-based speaker embeddings are introduced considering that 
the set of interlocutors are inconsistent in different conversations.
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Interlocutor Structure Modeling

• Extract the contextualized representations for each [CLS] token 
representing individual utterances. 

• A task-dependent non-linear transformation is placed on top of BERT. 

• Encoding the input data only once is computation-efficient. 
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Interlocutor Structure Modeling

• Reply-to Utterance Recognition: To enable the model to recognize 
the addressee of each utterance, this task is proposed to learn which 
preceding utterance the current utterance replies to.
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Interlocutor Structure Modeling

• Reply-to Utterance Recognition: For a specific utterance Ui, its 
matching scores with all its preceding utterances are calculated as 

• Dynamic sampling + Cross-entropy loss minimization
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Interlocutor Structure Modeling

• Identical Speaker Searching: Since the set of interlocutors vary across 
conversations, the task of predicting the speaker of an utterance is 
reformulated as searching for the utterances sharing the identical 
speaker.
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Interlocutor Structure Modeling

• Identical Speaker Searching: Mask the speaker embedding of a 
specific utterance in the input representation, and calculate the 
probability of two utterances sharing the same speaker.

• Dynamic sampling + Cross-entropy loss minimization
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Interlocutor Structure Modeling

• Pointer Consistency Distinction: A pair of utterances representing the 
“reply-to” relationship is defined as a speaker-to-addressee pointer.

• We assume that the representations of two pointers directing from 
the same speaker to the same addressee should be consistent.
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Interlocutor Structure Modeling

• Pointer Consistency Distinction: Capture the pointer information 
contained in each utterance tuple as
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Interlocutor Structure Modeling

• Pointer Consistency Distinction: A consistent pointer representations 
and an inconsistent one sampled from this conversation are obtained. 
The similarities between every two pointers are calculated as
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Interlocutor Structure Modeling

• Pointer Consistency Distinction: Minimize the hinge loss which 
enforces mij to be larger than mik by at least a margin ∆ as
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Utterance Semantics Modeling

• Shared Node Detection: A full MPC instance can be divided into 
several sub-conversations and we assume that the representations of 
sub-conversations under the same parent node tend to be similar. 

• For example, two sub-conversations {U3, U5, U7, U8} and {U4, U6, 
U9} share the same parent node U2.
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Utterance Semantics Modeling

• Shared Node Detection: Given a full MPC, the two sub-conversations 
under the top shared node (most utterances) form a positive pair 
empirically. Replace one sub-conversation with another one randomly 
sampled from the training corpus to form a negative pair. 

• Sequence-pair prediction with the representation of the [CLS] token.

• Cross-entropy loss minimization.
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Utterance Semantics Modeling

• Masked Shared Utterance Restoration: There are usually several 
utterances replying-to a shared utterance in MPC. A shared utterance 
is semantically relevant to more utterances in the context than non-
shared ones.

• All tokens in a sampled shared utterance are masked with a [MASK] 
token and the model is enforced to restore the masked utterance 
given the rest conversation. (Utterance-level Language Model)
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Multi-task Learning

• The tasks of masked language model (MLM) and next sentence 
prediction (NSP) in original BERT pre-training are also adopted, which 
have been proven effective for incorporating domain knowledge.

• MPCBERT is trained by performing multi-task learning that minimizes 
the sum of all loss functions as
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Downstream Tasks

• To measure the effectiveness of these self-supervised tasks and to 
test the generalization ability of MPC-BERT, we evaluate MPC-BERT on 
three downstream tasks including addressee recognition, speaker 
identification and response selection, which are three core research 
issues of MPC.
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Addressee Recognition

• In this paper, we follow the more challenging setting in Le et al. 
(2019) where addressees of all utterances in a conversation are asked 
to recognized.

• Given { 𝑠𝑛, 𝑢𝑛, 𝑎𝑛 }𝑛=1
𝑁 \ {𝑎𝑛}𝑛=1

𝑁 , models are asked to predict 
{  𝑎𝑛}𝑛=1

𝑁 where  𝑎𝑛 is selected from the interlocutor set in this 
conversation.

*𝑎, 𝑢, 𝑠 and / denote addressee, utterance, speaker and exclusion 
respectively.
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Speaker Identification

• This task aims to identify the speaker of the last utterance in a 
conversation, where the identified speaker is selected from the 
interlocutor set in this conversation.

• Given { 𝑠𝑛, 𝑢𝑛, 𝑎𝑛 }𝑛=1
𝑁 \ 𝑠𝑁 , models are asked to predict  𝑠𝑁, where  𝑠𝑁

is selected from the interlocutor set in this conversation.
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Response Selection

• This tasks aims to measure the similarity between a context and a 
response, and then rank a set of response candidates, which is an 
important retrieval-based approach for chatbots.

• This task asks models to select  𝑢𝑁 from a set of response candidates 
given the conversation context { 𝑠𝑛, 𝑢𝑛, 𝑎𝑛 }𝑛=1

𝑁 \ 𝑢𝑁.
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Experiments

• Datasets

We evaluated MPC-BERT on two Ubuntu IRC benchmarks.
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Addressee Recognition

• Precision@1 (P@1) to evaluate each utterance with ground truth. 
Accuracy (Acc.) to evaluate a session if all addressees are recognized.
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Addressee Recognition

• MPC-BERT outperforms SA-BERT by margins of 3.51%, 2.86%, 3.28% 
and 5.36% on these test sets respectively in terms of Acc.
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Addressee Recognition

• RUR contributes the most, and the tasks modeling interlocutor 
structure contribute more than those for utterance semantics. 
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Speaker Identification

• Precision@1 (P@1) to evaluate the last utterance of a conversation.

• MPC-BERT outperforms SA-BERT by margins of 7.66%, 2.60%, 3.38% 
and 4.24% respectively in terms of P@1.

• ISS and RUR contribute the most.
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Response Selection

• Rn@k to evaluate top-k selected responses from n available 
candidates. Two settings of R2@1 and R10@1 were followed.
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Response Selection

• MPC-BERT outperforms SA-BERT by margins of 3.82%, 2.71%, 2.55% 
and 3.22% respectively in terms of R10@1.
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Response Selection

• SND contributes the most, and the two tasks modeling the utterance 
semantics contribute more than those for the interlocutor structures.
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Discussions

• How the performance of BERT, SA-BERT and MPC-BERT changed with 
respect to different session lengths on the test sets of Ouchi and 
Tsuboi (2016).
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Discussions

• The performance of addressee recognition and speaker identification 
dropped as the session length increased. 

• The reason might be that longer sessions always contain more 
interlocutors which increase the difficulties of predicting 
interlocutors. 
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Discussions

• The performance of response selection was significantly improved as 
the session length increased. 

• It can be attributed to that longer sessions enrich the representations 
of contexts with more details which benefit response selection.
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Discussions

• As the session length increased, the performance of MPC-BERT 
dropped more slightly than that of SA-BERT on addressee recognition 
and speaker identification, and the R10@1 gap between MPC-BERT 
and SA-BERT on response selection enlarged from 2.71% to 3.22%. 

• Imply superiorities of MPC-BERT on modeling complicated structures.

38



Outline 

• Introduction

• MPC-BERT

• Downstream Tasks

• Experiments

• Conclusion

39



Conclusion

• We present MPC-BERT, a pre-trained language model with five self-
supervised tasks for MPC understanding. These tasks jointly learn 
who says what to whom in MPCs. 

• Experimental results on three downstream tasks show that MPC-BERT 
outperforms previous methods by large margins and achieves new 
state-of-the-art performance on two benchmarks.
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